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Abstract. Brain Tumor Segmentation from magnetic resonance imag-
ing (MRI) is a critical technique for early diagnosis. However, rather than
having complete four modalities as in BraTS dataset, it is common to
have missing modalities in clinical scenarios. We design a brain tumor
segmentation algorithm that is robust to the absence of any modal-
ity. Our network includes a channel-independent encoding path and a
feature-fusion decoding path. We use self-supervised training through
channel dropout and also propose a novel domain adaptation method
on feature maps to recover the information from the missing channel.
Our results demonstrate that the quality of the segmentation depends
on which modality is missing. Furthermore, we also discuss and visual-
ize the contribution of each modality to the segmentation results. Their
contributions are along well with the expert screening routine.

Keywords: Brain tumor segmentation · Multi-modality ·
Domain adaptation · Self-supervised learning

1 Introduction

In the United States, it is estimated that 25,000 new patients are diagnosed with
brain cancer every year. While average five-year survival rate is just above one
in three, early diagnosis is important to increase life quality of patients. MR
imaging are the most common kinds of screening methods on brain pathology.
MR images provide some primary indicators on unhealthy tissue matters, and
have great impact on improved diagnosis, tumor classification and treatment
planning.

While brain tumor segmentation requires professional knowledge to distin-
guish unhealthy tissues from healthy ones. Those tasks are expensive and limited.
Computer-aided automatic segmentation tools provide an important reference
for diagnosis. The automatic input-output pipeline can provide patients instant
diagnosis that gives them the opportunity to have first-aid on what suspects to
be a pathology.

The success of deep learning has made computer program an indispensable
aid to physicians for analyzing on brain tumor development [6]. Such auto-
matic detection methods based on multi-layer neural networks have been widely
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applied to segmentation on brain tumors. MICCAI Brain Tumor Segmentation
(BraTS) challenge collected so far the largest collection of brain tumor segmenta-
tion dataset that is publicly available. They use well-defined training and testing
splits, thereby allowing us fair comparison among different approaches. Moham-
mad et al. are the first to apply deep neural network methods to segment brain
tumors on BraTS dataset [4]. They use Fully Convolutional Networks (FCN) to
perform pixel level classification by taking local patches as input. Their method
becomes the baseline for deep learning based approach on BrainTumor Seg-
mentation. In our knowledge, the best result on Brain Tumor Segmentation is
produced by RA-UNet [8] which proposes a 3D hybrid residual attention-aware
segmentation method. They achieve Dice score of 0.8863 on whole tumor seg-
mentation. Currently, state-of-art result on BraTS dataset can even produce
comparable results with human experts.

However current state-of-art brain tumor segmentation benchmark requires
complete MR images in all T1, T2, T1c and Flair modalities, as provided in the
dataset. Multi-modality images provide complementary information to distin-
guish tissues and anatomies. Segmenting brain tumors from MR images learns
a complicated function on all four modalities parameterized both by anatomical
morphology and local pixels values. However, in practical situations, different
hospitals may follow different protocols and procedures when performing MR
images. Missing one of the four modalities is common. This may pose some chal-
lenges on simultaneous available requirements of four complete modalities on
MR images.

Related Work. Image segmentation a task of clustering pixels into salient image
regions corresponding to their characteristics. They typical generate labels on
the pixel level. Earlier time image segmentation uses handcrafted filter banks like
Gaussian Kernels, Fourier Transformations, Wavelets to pre-process the image
and later trains a SVM for classification. Succeeding work [16] uses statistical
approach like CRF to infer a fine boundary. CRF approaches incorporates local
evidence in unary assignments and models interactions between label assignment
in a probabilistic graphical model. In the era of deep learning, convolutional neu-
ral networks (CNNs) are considered as the state-of-the-art in biomedical image
segmentation. Deep approaches include a forward pipeline to inference target
from inputs and a backward pipeline to learn network parameters. Early deep
learning method on image segmentation uses FCN classification networks that
perform pixels level classifications by taking local region inputs. Later approaches
turn to U-Net [14] structure that include a down-sampling path to encode input
images and an up-sampling path to decode feature maps to segmentation map.
Further work [18] adds a RNN layer like a CRF to further refine the boundary
of segmentation maps produced by U-Nets.

Deep Learning approaches for brain tumor segmentation include end-to-end
U-Net [7,9], regional proposals [15], hierarchy classification [2] and level set [10].
Hierarchical models have been proposed to firstly classify pixels into background
and whole tumor using T2 and Flair channels, the whole tumor is then further
classified into four classes based on all four modalities [2].
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There are also a number of methods proposed on dealing with missing data in
medical imaging. Primitive methods include building separate models for each
condition. However each model could only fit a specific combination of input
modalities. Domain adaptation methods are widely used to learn a unified model
that could apply for a wide spectrum of channel modes. Ganin et al. [3] use
adversarial loss on intermediate feature maps of two domains and thus transfer
the network learnt in one domain to the other. Manders et al. [11] use a class
specific adversarial loss on feature maps to transfer the learnt network from
source domain to target domain. Generative model is also proposed by Zhang
et al. [17] to synthesize missing channel from available channels. Havaei et al.
[5] builds a unified model from purely self-supervised training pipeline for each
individual channel. And they made combined prediction on multi-channels by
merging the feature maps from each channels and computing the mean and
variance.

Contributions. In our paper, we use self-supervised learning by randomly
removing one modality during training to enhance the model to handle the
instances with a missing modality. While trained with a missing modality, we
use an extra adversarial loss to ensure the modal generate similar features as
in full modality situation. Rather than directly adapting one domain to another
in previous methods, we consider domain diversities from different channels. We
take the combined features from all the domains and adapt it to encode distri-
bution on any of remaining channels after dropping one.

Our contributions in this paper are three folds:

– Firstly, we learn a network that can be broadly applied to tolerate on missing
any modality without the need of fitting to specific combinations of remaining
modalities.

– Secondly, we put forward a novel domain adaptation model. Our adaptation
model uses adversarial loss to adapt feature maps from missing modalities to
the one from full modalities.

– Finally, we decouple the segmentation contribution to each individual modal-
ity and thus generate on interpretations of our segmentation on four modali-
ties of MR images.

2 Training Modality Missing Tolerant Network: A Joint
Objective of Missing Modality Reconstruction and
Domain Adaptation

2.1 U-Net Structure: Modality-Separate Encoding Path
and Feature Fusion at Various Resolutions on Decoding Path

Our basic model architecture follows U-net, as shown in Fig. 1. Each modality is
fed into the model as one channel. Blue box indicates separated encoding path
of the multi-channel MR image input. Red box indicates decoding path follow-
ing the encoding of multi-channel input on various levels of feature maps. Green
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box indicates multi-stage segmentation outputs. Encoding path includes multiple
feed-forward down-sampling convolutional layers after each channel input. And
it ends up with 64 features map of resolution 24 × 25 from each input channel.
Individual encoding path of each channel have independent sets of parameters
and have no connection with each other before decoding. Though cross-channel
filter banks could be used to extract features by contrasting different input chan-
nels at early stage in a more straight-forward way, our separated feature maps on
four different channels can be used to encode abstractions of segmentation infor-
mation that is tolerant on channel loss. Our separately encoded feature maps
are fused and decoded in our following decoding path.

Fig. 1. The architecture of our 4 channel input segmentation network (Color figure
online)

In our network’s decoding path, higher resolutions of segmentation outputs
are created by successively up-sampling in a bottom-up approach and mixing
channel-separate feature maps at various levels. Up-sampling operations use de-
convolution operators. Channel-separate feature maps created at encoding path
are fused by convolution operators. The features maps at the end of encoding
path from each input channel are fused to create bottle-neck feature maps at
the same resolution. Two levels of inter-mediate feature maps from each input
channel are fused with the feature maps created along the decoding path. We
fuse intermediate feature maps from encoding path with the ones from decoding
to create skip connections. Our decoding path includes a total of three stages
of successive mixing and up-sampling. After each stage, we also generate a seg-
mentation at the same level of the same resolution by convolutions. The final
segmentation outputs with the same resolutions as input MR images are gener-
ated after the final stage.
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We train on the lower resolution segmentation outputs at the intermediate
feature maps to force our network learn a hierarchical representation of segmen-
tation related information from coarse to fine, where the structural information
is encoded at the lower resolution feature maps and the boundary level informa-
tion is encoded at the higher resolution feature maps. In this way, we generate
our segmentation outputs by sequentially inferring area of pathology structures
and exact boundaries.

2.2 Segmentation on Missing Modality Inputs

We first define how our network infers segmentation outputs from missing chan-
nel inputs. Formally, let’s denote xd as a sample taken from the training set D,
C as the set of all channels in MR images. And we suppose only channels in set
C−

d ∈ C are available. As we mentioned previously, our U-Net’s decoding path
mixes the channel-specific feature maps with the feature maps created along the
decoding path and then use convolution operations to predict the probability of
segmentation at various resolutions. In the condition of missing channel inputs,
we set the encoding path of missing channel to zero, and keep the rest the same.
For the decoding path, the feature maps are calculated as :

fi(xd) =
∑

c∈C−
d

Ŵ c
i (f̂c

i (xd)) + Wi(fi−1(xd)), (1)

where Ŵ c
i (·) denotes the skip convolution kernel on the same level encoding

feature map f̂c
i (xd) from channel c at layer i, W i(·) denotes the feed-forward

convolution kernel on feature map fi−1(xd) produced at the layer (i − 1) before
along decoding path. The skip convolution feature maps f̂c

i (xd) comes from
the encoding path after a 3 × 3 stride 1 convolution on feature map of the
same size as fi−1(xd). At the bottleneck layer 0, their feature maps only come
from convolutions on channel-separated feature maps from encoding layers. For
missing channel inputs, we only convolute on those feature maps from available
channels and zero out the rest.

f−
0 (xd) =

∑

c∈C−
d

W c
0 (f̂c

0 (xd)) (2)

where W c
0 (·) denotes the convolution kernel on the feature map f̂c

0(xd) from
channel c. The rest available channels for encoding path keep the same as in the
architecture of full channels in described in Sect. 2.1.

2.3 Training Missing Modality Tolerant Model by Random
Modality-Drop

The model proposed in Sect. 2.2 is able to train and test images with missing
channels. However, the missing channels will certainly jeopardize the segmen-
tation performance. To make our model robust to channel losses, we initiate a
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Fig. 2. Training of our brain separation networks on missing channel. Encoded feature
maps from 4 separate channels are connected to decoding path in full channel input.
Encoded feature maps from residue channels are connected on decoding path in missing
channel input. We randomly drop one channel in a training step. Our training objective
function include the reconstruction loss on full channel input and missing channel input.
We also add the similarity loss on decoded feature maps from full channel input and
the one from missing channel input.

process to compensate the missed modalities. We train the model by randomly
dropping out an input channel. The model has independent encoding path has
two benefits: (i) to learn a unique feature maps for each input channel (ii) to
avoid the false co-adaptations between modalities. Our key idea is to train a
model capable of producing meaningful segmentations from any arbitrary com-
bination of available channels.

The objective function is as follows:

Lseg drop =
3∑

k=1

∑

d∈D

kyd log pY (kŷd|x(C−
d )

d ), (3)

where x
(C−

d )

d is the |C| − 1 available channel inputs from xd after we randomly
drop one, kyd is the k’s stage resolution of one-hot encoding of segmentation

labels, pY (kŷd|x(C−
d )

d ) is the softmax segmentation prediction. We use a uniform
distribution to seed the index of the channel to be dropped at each training step.
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2.4 Domain Adversarial Similarity Loss on Bottleneck Feature
Maps

The domain adversarial similarity loss [3] is used with a discriminator to adapt
representations from different domains to a similar distribution. Our whole train-
ing diagram is shown in Fig. 2. We further introduce a domain adversarial sim-
ilarity loss term on bottleneck feature maps for co-adaptations among abstract
representations from different channels. We choose bottleneck feature maps for
adaptation because it is where individually predicted abstract features are fused
to produce a joint inference on high level representations for segmentations
(mostly at structural level).

The outputs at bottleneck layer are the sum of convolutions from all con-
tributing channels as shown in Eq. 3 . In the case of modality-drop, the outputs
at bottleneck layer are the sum of convolutions from available channels.

The expectation of f−
0 (xd) could be written as:

E[f−
0 (xd)] = Eδ,xd

[
∑

c∈C−
d

W c
0 (f̂c

0(xd))]

= Eδ,xd
[
∑

c∈C

δ(c)W c
0 (f̂c

0 (xd))]

= Eδ|xd
[
∑

c∈C

δ(c)Exd
[W c

0 (f̂c
0 (xd))]]

=
∑

c∈C
p(δ(c) �= 0)E[W c

0 (f̂c
0 (xd))]]

As we use uniform distribution to choose the dropout channel on C channels
input, each individual channel c is kept with probability p(δ(c) �= 0) = C−1

C . So
we have

E[f−
0 (xd)] =

C − 1
C

E[
∑

c∈C
W c

0 (f̂c
0(xd))]]

=
C − 1

C
E[f0(xd)]

To co-adapt the W c
0 (f̂c

0 (xd)) from different channels, we use adversarial loss
on f0(xd) and f̂0(xd) after compensation for the coefficient on their expecta-
tion’s ratio, we use the following minimax adversarial loss to regularize the two
distributions.

Lsimilarity = min
θ

max
φ

E

x
(C−

d
)

d

[logDθ(f̂0(xd, φ))] + E
x
(Cd)
d

[log(1− Dθ(
C − 1

C
f0(xd, φ))], (4)

where Dθ(·) is an auxiliary discriminative network that are co-trained with our
segmentation network. The total loss function of our training is

L = Lseg full + αLseg drop + βLsimilarity (5)
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2.5 Prediction Relevance Analysis

Robnik-Sikonja et al. [13] proposed a technique for assigning relevance value to
each input feature with respect to a class label. Inspired by their idea, we assign
a relevance value to each input channel c with respect to segmentation label j
for every pixel. The basic idea is that the relevance of a segmentation label of
a channel j can be estimated by measuring how the prediction changes if we
remove channel c.

We first estimate probability for class j in pixel ŷd produced from full channels
inputs, denoted as log pY (ŷd = j|x(C)

d ). Then we re-estimate the class probabil-

ity from missing channel c, denoted as log pY (ŷd = j|x(C−
c )

d ). Once these class
probabilities are estimated, we follow the definition proposed by Robnik-Sikonja
et al. [13] to calculate the weight of evidence on class j from channel c, given as

WEc(y
j
d = c|xc

d) = log2(odds(pY (ŷd = j|x(C)
d ))) − log2(odds(pY (ŷd = j|x(C−

c )
d ))),

(6)
where odds(a) = a/(1 − a).

3 Experiments

Data, Data Selection and Preprocessing. We evaluate our method on
BraTS17. BraTS17 contains 262 scans of glioblastoma and 199 scans of lower
grade glioma. Our U-Net is trained on extracted 2D image patches which are
extracted from all the 3D scans that have more than 200 non-zeros pixels (exclud-
ing the wasteful empty scans). We randomly split the extracted 3D volume data
to 80% training and 20% testing. We normalize the gray value to a range of -1
to 1 for each input channel and crop the MR image on the center window of size
200 × 186. We follow the protocol in BraTS17 to label the four types of intra-
tumoral structures, namely GD-enhancing tumor (ET-label 4), the peritumoral
edema (ED-label 2), the necrotic and non-enhancing tumor (NCR/NET label 1)
and the background (label 0). For MR image scans, all the ground truth labels
have been manually labeled and certified by expert board-certified neuroradi-
ologists. The manual labeling process is followed by a hierarchical annotation
protocol. Experts firstly segment whole tumor regions by contrasting on T2 and
Flair channel and separate tumor core and enhancing core from T1 and T1c
channel. Experts decision are agreed by majority vote.

Evaluation. All our experiments were performed using Python 3.6 with Ten-
sorFlow library [1] and run on a GTX 1080 Ti graphics processing unit using
CUDA 8.0. Our models are tested on both full channel input and missing chan-
nel input. In the case of missing channel input, each time we remove one channel
from full channel input. Specifically, we ran the following experiments.

Firstly, we evaluated our segmentation result quantitatively by measuring
Dice score with ground-truth. We report three types of Dice scores including
whole tumor, tumor core and enhancing core on 2D slice level. Our three types
of Dice score were evaluated on both full channel inputs and missing channel
inputs.

xwcui
高亮

xwcui
打字机
类标签

xwcui
打字机
多个分割标签，水肿、坏死

xwcui
打字机
先全通道预测

xwcui
打字机
再缺失通道预测

xwcui
下划线

xwcui
打字机
计算缺失通道c在第j类分割中的权重

xwcui
下划线

xwcui
下划线

xwcui
下划线

xwcui
高亮

xwcui
打字机
排除空扫描

xwcui
下划线

xwcui
下划线

xwcui
下划线

xwcui
打字机
三类分割结果

xwcui
下划线

xwcui
下划线

xwcui
下划线

xwcui
打字机
在全通道和通道缺失上都进行了测试



Brain Tumor Segmentation on MRI with Missing Modalities 425

Secondly, we explored our segmentation results qualitatively by visualizing
our results with ground truth segmentation. Our quality assessments include the
segmentation region, boundary qualities and specificity/sensitivity. We evaluated
our trained network’s segmentation qualities on both full channel inputs and
missing channel inputs.

Finally, to provide interpretations on which our prediction is based, we gen-
erated relevance map by the method we described in Sect. 2.5. This helps us to
understand the role of each individual channel on the estimation of whole tumor,
tumor core and enhanced core. Our model has a surplus benefit of generating
meaningful interpretations as our network broadly adapts to full channel and
missing channel input.

Fig. 3. Examples of the segmentation masks with missing modality compared to the
ground truth. The edema area is labeled in green color. The non-enhancing core area
is labeled in red color. The enhancing core area is labeled in yellow color. (Color figure
online)

Quantitative Result of our Model. The segmentation result with our pro-
posed method is shown in Table 1. In the presence of four channels, our model
can be comparable with the state-of-art result in [8]. The down-grading on Dice
score for three types of tumor regions from missing channel inputs complies with
the result in [5]. We also have the following findings:

– Missing T1 and T2 channel would have a minor decreasing in Dice score of all
three categories. This observation consists with the manual protocol of BraTs
dataset. T1 verifies the tumor core segmentation from T1c channel and T2
verifies whole tumor segmentation from Flair.
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– Missing T1c channel would have a substantial decreasing in Dice score for
both tumor core and enhancing core, for T1c is the chief indicating channel
for segmenting tumor core and enhancing core region. Missing Flair channel
would have a sharp decreasing on Dice score for all three categories, for Flair
is the chief indicating channel for segmenting the whole tumor.

– As shown in Fig. 3, missing Flair channel would result in a coarse locating on
the whole tumor region. And missing T1c channel would result in mistaking
tumor core and enhanced core region as non-core region.

To provide justification of domain adaptation loss term we introduce, we
also provide an ablation experiment by training only on reconstruction loss in
training process. Our baseline result is shown in Table 1. Distinct increases of
Dice score in all categories are observed when trained with domain adaptation
loss compared with the baseline. The qualitative visualization are consistent with
the quantitative results as shown in Fig. 3.

Table 1. The dice scores for whole tumor (WT), tumor core (TC) and enhanced
core (EC) on the test dataset. The left is the result of our proposed method with our
adversarial loss. The right is result of our baseline method trained without our domain
adaptation loss.

Proposed Baseline

WT TC EC WT TC EC

Full channel 0.894 0.790 0.653 0.875 0.693 0.554

Missing T1 0.890 0.778 0.642 0.871 0.672 0.532

Missing T1c 0.879 0.570 0.484 0.856 0.426 0.380

Missing T2 0.893 0.775 0.643 0.865 0.660 0.521

Missing Flair 0.616 0.680 0.552 0.508 0.570 0.464

Contribution of Every Channel to Segmentation Labels. In contrast to
most segmentation algorithms performed as black-boxes and evaluated purely
on accuracy, we provide some insights of the decisions of segmentation networks
to physicians. The physicians could weigh this information and incorporate it in
the overall diagnosis process.

Figure 4 shows the contribution of each channel while predicting three
types of tumors at pixel level. By weighting the prediction differences between
inputting full channels and removing a specific channel, we visualize the influ-
ence of each channel to an individual segmentation label. Red color represents
positive evidence, and blue color represents negative evidence from that chan-
nel to the segmentation label. We observed that, different channels contribute
distinctly to different tumor types.

For example, Flair channel provides a strong positive evidence on the whole
tumor regions and a negative evidence of the non-tumor regions. T2 channel
refines the evidence across the boundary area. T1c channel provides supporting
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Fig. 4. Visualization of segmentation decision on different channels, using prediction
relevance analysis. Red color represents positive evidence, and blue color represents
negative evidence of that region. (Color figure online)

evidence both on tumor core and enhanced core area against the rest in the
whole tumor area. T1 channel refines the evidence across the boundaries of
tumor core area. In general, we trust the segmentation classifiers that could not
only produce exact and distinct labels for each tumor type, but also provide
reasonable explanations for its decisions.

4 Conclusion

We propose a brain tumor segmentation algorithm that is robust to missing
modality. Our model is designed to recover the information from missing modal-
ity and is able to visualize the contribution of each channel. The comparisons
between full and missing modality show the important roles of Flair and T1c on
discrimination of whole tumor and tumor core, respectively. These findings are
along well with the expert labeling routine [12].
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